\(\int \frac {(d+e x^2)^4}{\sqrt {a+c x^4}} \, dx\) [150]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 388 \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {4 d e \left (5 c d^2-3 a e^2\right ) x \sqrt {a+c x^4}}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {4 \sqrt [4]{a} d e \left (5 c d^2-3 a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}} \]

[Out]

1/21*e^2*(-5*a*e^2+42*c*d^2)*x*(c*x^4+a)^(1/2)/c^2+4/5*d*e^3*x^3*(c*x^4+a)^(1/2)/c+1/7*e^4*x^5*(c*x^4+a)^(1/2)
/c+4/5*d*e*(-3*a*e^2+5*c*d^2)*x*(c*x^4+a)^(1/2)/c^(3/2)/(a^(1/2)+x^2*c^(1/2))-4/5*a^(1/4)*d*e*(-3*a*e^2+5*c*d^
2)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*
x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+a)^(1/
2)+1/210*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^
(1/4)*x/a^(1/4))),1/2*2^(1/2))*(105*c^2*d^4-210*a*c*d^2*e^2+25*a^2*e^4+420*c^(3/2)*d^3*e*a^(1/2)-252*a^(3/2)*d
*e^3*c^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(1/4)/c^(9/4)/(c*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 386, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1221, 1902, 1212, 226, 1210} \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 \left (5 a^2 e^4-42 a c d^2 e^2+21 c^2 d^4\right )+84 \sqrt {a} \sqrt {c} d e \left (5 c d^2-3 a e^2\right )\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}}-\frac {4 \sqrt [4]{a} d e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 c d^2-3 a e^2\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {4 d e x \sqrt {a+c x^4} \left (5 c d^2-3 a e^2\right )}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {e^2 x \sqrt {a+c x^4} \left (42 c d^2-5 a e^2\right )}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c} \]

[In]

Int[(d + e*x^2)^4/Sqrt[a + c*x^4],x]

[Out]

(e^2*(42*c*d^2 - 5*a*e^2)*x*Sqrt[a + c*x^4])/(21*c^2) + (4*d*e^3*x^3*Sqrt[a + c*x^4])/(5*c) + (e^4*x^5*Sqrt[a
+ c*x^4])/(7*c) + (4*d*e*(5*c*d^2 - 3*a*e^2)*x*Sqrt[a + c*x^4])/(5*c^(3/2)*(Sqrt[a] + Sqrt[c]*x^2)) - (4*a^(1/
4)*d*e*(5*c*d^2 - 3*a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*Arc
Tan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(7/4)*Sqrt[a + c*x^4]) + ((84*Sqrt[a]*Sqrt[c]*d*e*(5*c*d^2 - 3*a*e^2) + 5
*(21*c^2*d^4 - 42*a*c*d^2*e^2 + 5*a^2*e^4))*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2
]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(210*a^(1/4)*c^(9/4)*Sqrt[a + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1221

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + c*x^4)^(p +
 1)/(c*(4*p + 2*q + 1))), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rule 1902

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq, x, q]}, D
ist[1/(b*(q + n*p + 1)), Int[ExpandToSum[b*(q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(q - n + 1)*x^(q - n), x]*(a +
 b*x^n)^p, x], x] + Simp[Pqq*x^(q - n + 1)*((a + b*x^n)^(p + 1)/(b*(q + n*p + 1))), x]] /; NeQ[q + n*p + 1, 0]
 && q - n >= 0 && (IntegerQ[2*p] || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && IG
tQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {7 c d^4+28 c d^3 e x^2+e^2 \left (42 c d^2-5 a e^2\right ) x^4+28 c d e^3 x^6}{\sqrt {a+c x^4}} \, dx}{7 c} \\ & = \frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {35 c^2 d^4+28 c d e \left (5 c d^2-3 a e^2\right ) x^2+5 c e^2 \left (42 c d^2-5 a e^2\right ) x^4}{\sqrt {a+c x^4}} \, dx}{35 c^2} \\ & = \frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {5 c \left (21 c^2 d^4-42 a c d^2 e^2+5 a^2 e^4\right )+84 c^2 d e \left (5 c d^2-3 a e^2\right ) x^2}{\sqrt {a+c x^4}} \, dx}{105 c^3} \\ & = \frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}-\frac {\left (4 \sqrt {a} d e \left (5 c d^2-3 a e^2\right )\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{5 c^{3/2}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{105 c^2} \\ & = \frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {4 d e \left (5 c d^2-3 a e^2\right ) x \sqrt {a+c x^4}}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {4 \sqrt [4]{a} d e \left (5 c d^2-3 a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.18 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.46 \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\frac {5 \left (21 c^2 d^4-42 a c d^2 e^2+5 a^2 e^4\right ) x \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {c x^4}{a}\right )+e x \left (-e \left (a+c x^4\right ) \left (25 a e^2-3 c \left (70 d^2+28 d e x^2+5 e^2 x^4\right )\right )+28 c d \left (5 c d^2-3 a e^2\right ) x^2 \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {c x^4}{a}\right )\right )}{105 c^2 \sqrt {a+c x^4}} \]

[In]

Integrate[(d + e*x^2)^4/Sqrt[a + c*x^4],x]

[Out]

(5*(21*c^2*d^4 - 42*a*c*d^2*e^2 + 5*a^2*e^4)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/
a)] + e*x*(-(e*(a + c*x^4)*(25*a*e^2 - 3*c*(70*d^2 + 28*d*e*x^2 + 5*e^2*x^4))) + 28*c*d*(5*c*d^2 - 3*a*e^2)*x^
2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(105*c^2*Sqrt[a + c*x^4])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 4.80 (sec) , antiderivative size = 286, normalized size of antiderivative = 0.74

method result size
elliptic \(\frac {e^{4} x^{5} \sqrt {c \,x^{4}+a}}{7 c}+\frac {4 d \,e^{3} x^{3} \sqrt {c \,x^{4}+a}}{5 c}+\frac {\left (6 e^{2} d^{2}-\frac {5 e^{4} a}{7 c}\right ) x \sqrt {c \,x^{4}+a}}{3 c}+\frac {\left (d^{4}-\frac {\left (6 e^{2} d^{2}-\frac {5 e^{4} a}{7 c}\right ) a}{3 c}\right ) \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \left (4 d^{3} e -\frac {12 d \,e^{3} a}{5 c}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(286\)
risch \(-\frac {e^{2} x \left (-15 e^{2} x^{4} c -84 d e \,x^{2} c +25 a \,e^{2}-210 c \,d^{2}\right ) \sqrt {c \,x^{4}+a}}{105 c^{2}}+\frac {\frac {25 a^{2} e^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {105 c^{2} d^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {210 a c \,d^{2} e^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {i \left (252 a c d \,e^{3}-420 c^{2} d^{3} e \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}}{105 c^{2}}\) \(400\)
default \(\frac {d^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+e^{4} \left (\frac {x^{5} \sqrt {c \,x^{4}+a}}{7 c}-\frac {5 a x \sqrt {c \,x^{4}+a}}{21 c^{2}}+\frac {5 a^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{21 c^{2} \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+4 d \,e^{3} \left (\frac {x^{3} \sqrt {c \,x^{4}+a}}{5 c}-\frac {3 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{5 c^{\frac {3}{2}} \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+6 e^{2} d^{2} \left (\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+\frac {4 i d^{3} e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(506\)

[In]

int((e*x^2+d)^4/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/7*e^4*x^5*(c*x^4+a)^(1/2)/c+4/5*d*e^3*x^3*(c*x^4+a)^(1/2)/c+1/3*(6*e^2*d^2-5/7*e^4/c*a)/c*x*(c*x^4+a)^(1/2)+
(d^4-1/3*(6*e^2*d^2-5/7*e^4/c*a)/c*a)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c
^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)+I*(4*d^3*e-12/5*d*e^3/c*a)*a^(1/2)/
(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1
/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))

Fricas [A] (verification not implemented)

none

Time = 0.09 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.53 \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\frac {84 \, {\left (5 \, a c d^{3} e - 3 \, a^{2} d e^{3}\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (105 \, c^{2} d^{4} - 420 \, a c d^{3} e - 210 \, a c d^{2} e^{2} + 252 \, a^{2} d e^{3} + 25 \, a^{2} e^{4}\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (15 \, a c e^{4} x^{6} + 84 \, a c d e^{3} x^{4} + 420 \, a c d^{3} e - 252 \, a^{2} d e^{3} + 5 \, {\left (42 \, a c d^{2} e^{2} - 5 \, a^{2} e^{4}\right )} x^{2}\right )} \sqrt {c x^{4} + a}}{105 \, a c^{2} x} \]

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/105*(84*(5*a*c*d^3*e - 3*a^2*d*e^3)*sqrt(c)*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/4)/x), -1) + (105*c^2
*d^4 - 420*a*c*d^3*e - 210*a*c*d^2*e^2 + 252*a^2*d*e^3 + 25*a^2*e^4)*sqrt(c)*x*(-a/c)^(3/4)*elliptic_f(arcsin(
(-a/c)^(1/4)/x), -1) + (15*a*c*e^4*x^6 + 84*a*c*d*e^3*x^4 + 420*a*c*d^3*e - 252*a^2*d*e^3 + 5*(42*a*c*d^2*e^2
- 5*a^2*e^4)*x^2)*sqrt(c*x^4 + a))/(a*c^2*x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.11 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.55 \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\frac {d^{4} x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {d^{3} e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{\sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {3 d^{2} e^{2} x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} + \frac {d e^{3} x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{\sqrt {a} \Gamma \left (\frac {11}{4}\right )} + \frac {e^{4} x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {13}{4}\right )} \]

[In]

integrate((e*x**2+d)**4/(c*x**4+a)**(1/2),x)

[Out]

d**4*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + d**3*e*x**3*gam
ma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(sqrt(a)*gamma(7/4)) + 3*d**2*e**2*x**5*gamma(5/4)
*hyper((1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(9/4)) + d*e**3*x**7*gamma(7/4)*hyper((1/
2, 7/4), (11/4,), c*x**4*exp_polar(I*pi)/a)/(sqrt(a)*gamma(11/4)) + e**4*x**9*gamma(9/4)*hyper((1/2, 9/4), (13
/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(13/4))

Maxima [F]

\[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{4}}{\sqrt {c x^{4} + a}} \,d x } \]

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^4/sqrt(c*x^4 + a), x)

Giac [F]

\[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{4}}{\sqrt {c x^{4} + a}} \,d x } \]

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^4/sqrt(c*x^4 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx=\int \frac {{\left (e\,x^2+d\right )}^4}{\sqrt {c\,x^4+a}} \,d x \]

[In]

int((d + e*x^2)^4/(a + c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)^4/(a + c*x^4)^(1/2), x)